Knot Floer homology in cyclic branched covers

نویسندگان

  • J ELISENDA GRIGSBY
  • Elisenda Grigsby
چکیده

In this paper, we introduce a sequence of invariants of a knot K in S3 : the knot Floer homology groups ĤFK(Σm(K); K̃, i) of the preimage of K in the m–fold cyclic branched cover over K . We exhibit ĤFK(Σm(K); K̃, i) as the categorification of a well-defined multiple of the Turaev torsion of Σm(K)− K̃ in the case where Σm(K) is a rational homology sphere. In addition, when K is a two-bridge knot, we prove that ĤFK(Σ2(K); K̃, s0) ∼= ĤFK(S3; K) for s0 the spin Spinc structure on Σ2(K). We conclude with a calculation involving two knots with identical ĤFK(S3; K, i) for which ĤFK(Σ2(K); K̃, i) differ as Z2 –graded groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Knot Floer Homology in Cyclic Branched Covers

We use grid diagrams to give a combinatorial algorithm for computing the knot Floer homology of the pullback of a knot K in its m-fold cyclic branched cover Σm(K), and we give computations when m = 2 for over fifty three-bridge knots with up to eleven crossings.

متن کامل

Combinatorial Description of Knot Floer Homology of Cyclic Branched Covers

In this paper, we introduce a simple combinatorial method for computing all versions (∧,+,−,∞) of the knot Floer homology of the preimage of a two-bridge knot Kp,q inside its double-branched cover, −L(p, q). The 4-pointed genus 1 Heegaard diagram we obtain looks like a twisted version of the toroidal grid diagrams recently introduced by Manolescu, Ozsváth, and Sarkar. We conclude with a discuss...

متن کامل

A Concordance Invariant from the Floer Homology of Double Branched Covers

Ozsváth and Szabó defined an analog of the Frøyshov invariant in the form of a correction term for the grading in Heegaard Floer homology. Applying this to the double cover of the 3-sphere branched over a knot K, we obtain an invariant δ of knot concordance. We show that δ is determined by the signature for alternating knots and knots with up to nine crossings, and conjecture a similar relation...

متن کامل

Finite Type Invariants of Cyclic Branched Covers

Given a knot in an integer homology sphere, one can construct a family of closed 3-manifolds (parametrized by the positive integers), namely the cyclic branched coverings of the knot. In this paper we give a formula for the the Casson-Walker invariants of these 3-manifolds in terms of residues of a rational function (which measures the 2-loop part of the Kontsevich integral of a knot) and the s...

متن کامل

A Remark on Khovanov Homology and Two-fold Branched Covers

Examples of knots and links distinguished by the total rank of their Khovanov homology but sharing the same two-fold branched cover are given. As a result, Khovanov homology does not yield an invariant of two-fold branched covers. Mutation provides an easy method for producing distinct knots sharing a common two-fold branched cover: The mutation in the branch set corresponds to a trivial surger...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006